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Let’s start with some trivia

1. What percentage of the ocean floor

has never been observed?

2. Out of every 10 marine organisms, how

many have never been discovered?

3. What is the world’s fastest-growing food

sector?

4. \What has more heat content: the ocean or

the atmosphere?

5. Which decade did the UN declare “Decade of

Ocean Science for Sustainable Development”?




Taking the Internet of Things to the Ocean World
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Less than 1 in a million of 10T is in the ocean, even it they covers >70% of the

planet and has significant needs for food, climate, etc.

loT Decision Making

Sensors Data & Prediction
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Why is bringing loT to the ocean
(esp. underwater) hard?

* Communication:

e Can’t use radio (WiFi, bluetooth)

* Direct underwater-to-air comms remains challenging
* Power:

* No power outlet (access); hard to replace batteries
* Sensing:

e Can’t use GPS (radio signals) for localization

* Imaging is challenging (light interferes, refracts, etc.)



Example Ocean Connectivity,
Sensing, & Power Technologies
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What did you notice about the
‘communications element”™?



How Is underwater loT different than in-air loT?

e Can’t use radio (WiFi, bluetooth)
* Can’t use GPS (radio signals)
* Power Is scarce

* Direct underwater-to-air comms remains challenging

Will cover two key technologies/areas
1. Underwater backscatter

2. Underwater-to-air communications



Problem: Battery life of underwater sensors is extremely
limited

Low-power underwater transmitters consume 100s of Watts
(e.g., WHOI low-power micro-modem 2019)

State-of-the-art sensors for tracking marine animals only last
for few hours or days

[Animal Biotelemetry’15, Scientific Reports’17]



Technology that Enables Underwater
Backscatter (Batteryless) Networking

PAB (ACM SIGCOMM’19)



Traditional Approach
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Sensor generates its own acoustic
signal

Underwater Backscatter

Acoustic
Sensor reflects an existing acoustic
signal



How can we control the reflections of acoustic
signals?



Key Idea: Use piezoelectricity to design programmable acoustic reflectors

Piezoelectric materials transform mechanical to electrical energy
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Key Idea: Use piezoelectricity to design programmable acoustic reflectors

Piezoelectric materials transform mechanical to electrical energy
Switch
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Key Idea: Use piezoelectricity to design programmable acoustic reflectors

Piezoelectric materials transform mechanical to electrical energy
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Piezo-Acoustic Backscatter
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/\/\ signal
Can’t vibrate
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No Title

Measuring the Backscatter Signal (by Hydrophone)
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How can we extend underwater backscatter to multiple
nodes?



Extending to Multiple Nodes
Option 1: Time Division Multiplexing
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Extending to Multiple Nodes
Option 1: Time Division Multiplexing
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Extending to Multiple Nodes
Option 2: Frequency Division Multiplexing

Projector Batteryless
hardware

Hydrophone



Extending to Multiple Nodes
Problem: Resonance of piezoelectrics limits their bandwidth

U



Extending to Multiple Nodes
Problem: Resonance of piezoelectrics limits their bandwidth

Rectified Voltage (V)

p

Operating at resonance maximizes energy harvesting but limits
concurrent transmissions (and FDMA)



Solution Idea: Shift the resonance frequency itself to a
different channel




Solution ldea: Shift the resonance frequency itself to a
different channel
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Solution Idea: Shift the resonance frequency itself to a
different channel

resonance frequency determined by

interaction between piezo & the
/ batteryless circuit
Batteryless Zeircuit(J) = plezo ()
Hardware

frequency dependent

-> Tune the circuit to a
different frequency



Solution Idea: Shift the resonance frequency itself to a
different channel

resonance frequency determined by

interaction between piezo & the
/ batteryless circuit
% L circuit = plezo(f )
—5

frequency dependent

-> Tune the circuit to a
different frequency



Solution Idea: Shift the resonance frequency itself to a
different channel

resonance frequency determined by
interaction between piezo & the

3 batteryless circuit
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Solution Idea: Shift the resonance frequency itself to a
different channel
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Implementation
Batteryless PAB sensor
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Implementation
Batteryless PAB sensor
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Open Source Code+Schematics:
https://github.com/saadafzal24/Underwater-Backscatter




Implementation
Batteryless PAB sensor Projector Hydrophone

fabricated in-house Aquarian H2A
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Power Consumption

Empirically measured using Keithley 2400 source meter
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1 million times less power than state-of-the-art low-power underwater
sensors [WHOI micro-modem 2019]



Power-up Range

Experiment: Vary power and distance to sensor
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Can we enable battery-free underwater imaging?




Can we enable battery-free underwater localization?
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Global Positioning System (GPS)




Conventional Underwater Positioning

Works by measuring distances to deployed anchors



Conventional Underwater Positioning

Works by measuring distances to deployed anchors

- Batteries run out of
energy

- Expensive packaging

- Difficult to scale
t\
1

& :

Distance = Time of Travel x Speed of Sound



Batteryless Underwater Positioning
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Can we enable battery-free underwater localization?
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Can we enable battery-free underwater Al?

Early results demonstrate 85%+ accuracy in identifying
marine species (without any batteries)

[ACM HotMobile’22] I London




Summary of this Lecture

* Motivation of Ocean loT & Existing Systems
* Basic Principles of Underwater backscatter
* Networking
* Localization
* Other applications: Imaging, Al, Robotics, Defense, Space

* Open problems
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